Viral-induced spinal motor neuron death is non-cell-autonomous and involves glutamate excitotoxicity.

نویسندگان

  • Jessica Darman
  • Stephanie Backovic
  • Sonny Dike
  • Nicholas J Maragakis
  • Chitra Krishnan
  • Jeffrey D Rothstein
  • David N Irani
  • Douglas A Kerr
چکیده

Neuroadapted Sindbis virus (NSV) is a neurotropic virus capable of inducing the death of spinal motor neurons in mice and rats. In this study we investigated the mechanisms that underlie NSV-induced motor neuron death. We found that many degenerating spinal motor neurons were not infected directly with NSV, suggesting that bystander cell death occurs. An excitotoxic mechanism was confirmed when blockade of calcium-permeable AMPA receptors attenuated motor neuron death both in vitro and in vivo. Blockade of astroglial glutamate reuptake potentiated NSV-induced motor neuron loss in vivo, suggesting that astrocyte-mediated removal of perisynaptic glutamate is important in limiting NSV-induced excitotoxic injury. Astroglial glutamate transport was reduced markedly in the spinal cord during NSV infection, in advance of motor neuron injury in susceptible mice. In contrast, we found 5.6-fold elevated glutamate uptake in the spinal cords of mice resistant to NSV-induced paralysis. Likewise, minocycline markedly increased spinal cord glutamate transport and protected mice from NSV-induced motor neuron death. These studies suggest that NSV infection triggers a cascade of events in the spinal cord resulting in impaired astrocytic glutamate transport and excitotoxic injury of motor neurons mediated via calcium-permeable AMPA receptors. Similar changes may occur in other motor neuron disorders such as amyotrophic lateral sclerosis or West Nile Virus-induced poliomyelitis, suggesting a common tissue injury pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NSC-34 Motor Neuron-Like Cells Are Unsuitable as Experimental Model for Glutamate-Mediated Excitotoxicity

Glutamate-induced excitotoxicity is a major contributor to motor neuron degeneration in the pathogenesis of amyotrophic lateral sclerosis (ALS). The spinal cord × Neuroblastoma hybrid cell line (NSC-34) is often used as a bona fide cellular model to investigate the physiopathological mechanisms of ALS. However, the physiological response of NSC-34 to glutamate remains insufficiently described. ...

متن کامل

Neuroprotective effect of CPDT on THA-induced cortical motor neuron death in an organotypic culture model.

Brain stroke, trauma, and motor neuron disease each can result in cortical motoneuron (CMN) death or impairment. Glutamate excitotoxicity induces motor neuron damage in both acute motor neuron loss and chronic motor neuron degeneration. It is necessary to find effective strategies to protect CMNs from excitotoxicity in a variety of pathological conditions. 5,6-Dihydrocyclopenta-1,2-dithiole-3-t...

متن کامل

Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats.

Mutation of Tar DNA-binding protein 43 (TDP-43) is linked to amyotrophic lateral sclerosis. Although astrocytes have important roles in neuron function and survival, their potential contribution to TDP-43 pathogenesis is unclear. Here, we created novel lines of transgenic rats that express a mutant form of human TDP-43 (M337V substitution) restricted to astrocytes. Selective expression of mutan...

متن کامل

System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclero...

متن کامل

Degeneration of spinal motor neurons by chronic AMPA-induced excitotoxicity in vivo and protection by energy substrates

INTRODUCTION Several data suggest that excitotoxicity due to excessive glutamatergic neurotransmission may be an important factor in the mechanisms of motor neuron (MN) death occurring in amyotrophic lateral sclerosis (ALS). We have previously shown that the overactivation of the Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) glutamate receptor type, through the conti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 34  شماره 

صفحات  -

تاریخ انتشار 2004